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Verification

• Code verification deals with identifying:

– Coding mistakes that cause the governing equations to 

be solved incorrectly, or

– Shortcomings of formulations or algorithms that result in 

undesirable or unexpected behavior.

• Code verification involves comparing code numerical 

solutions with exact solutions.

• Solution verification deals with quantifying numerical errors 

in a given solution.

• Code verification is especially needed when a code is believed 

to be free of coding and algorithmic mistakes!  



Code Verification

• In code verification, an important thing to verify is order-of-

accuracy of discretization: 

– what is the observed order-of-accuracy of the numerical 

solution?  

– is the observed order greater than zero? (convergence)

– Does the observed order match one’s expectations?

– If known, does the observed order match the formal 

accuracy of the algorithm?

• Order verification requires:

– Mesh refinement/coarsening

– Exact solutions to governing equations



Methods for Obtaining Exact Solutions
Method of Exact Solutions (MES): solutions to simplified forms of governing 
equations

• Physically reasonable solutions, however
– Need a new exact solution every time the boundary conditions are changed

– An exact solution may not exist for a given equation set.

– Exact solutions which do exist may lack generality and therefore even multiple 
exact solution test suites may fail to test all code capabilities 

– Exact solutions which do exist can be difficult to evaluate accurately (e.g., series 
or integral solutions)

– Sometimes can only be found on unbounded domains

– Often contain singularities which make it difficult to determine order of accuracy

Method of Manufactured Solutions (MMS): solutions to general form of 
governing equations or ‘modified’ general form 

• Are exact solutions, too!
– Often can use same mfg solution with different sets of boundary conditions

– Can, in principle, test full set of code capabilities (greater coverage)

– Easy to evaluate 

– Can avoid singular and discontinuous solutions

– May require the addition of a non-physical source term to the governing equations

– Analytic computation of source term is usually complex



The Method of Manufactured Solutions

1. Create (i.e., manufacture) a solution that satisfies the 
governing equations (with possibly the addition of a source 
term) on the domain of interest. 

2. Operate on this manufactured solution with the differential 
operator for the interior equations to determine the source 
term which balances the equations

3. If no source exists in the governing equations (as in Euler and 
Navier-Stokes), then the code must be modified to include a 
source term.

4. Provide the source term input to the code, 

5. Compute any fluxes or other needed to balance the boundary 
conditions using the mfg soln. (e.g., flux BC’s)

6. Proceed with order verification.
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Boundary Condition Issues

• For Dirichlet & Neumann boundary conditions, one 
can often construct the manufactured solution 
independently of the specific conditions to satisfied 
by u* on the boundary.

• For certain boundary conditions (a.k.a. hardwired 
boundary conditions), one often manufactures  the 
solution so u* directly satisfies the boundary 
conditions.  

• For hyperbolic and parabolic equation sets, only 
constraints corresponding to incoming characteristics 
need to be satisfied.



Boundary Conditions Tested by MMS

Eulersupersonic outflow

Eulersubsonic outflow

Navier-Stokes, RANSno-slip, isothermal

Navier-Stokes, RANSno-slip, adiabatic

Eulerslip

Equation SetBoundary Condition



Surface Definition
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Solid Surface Velocity Conditions
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Solid Surface Thermal Conditions
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Outflow Conditions

Using these boundary conditions, not enough degrees of 

freedom remain to test inflow conditions with the same solution.
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The Surfaces
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A six-sided domain can be constructed which is bounded 
by FFFFmin < F F F F < FFFFmax, GGGGmin < G G G G < GGGGmax, HHHHmin < H H H H < HHHHmax.

Test solid surface BCs on FFFF = C.

Test outflow BCs on GGGG = C.

No BCs tested on HHHH = C⇒⇒⇒⇒ simplicity okay.



Computational Domain 1
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Tests Using Domain 1

1. All-Dirichlet, Green-Gauss gradient reconstruction

2. All-Dirichlet, Equally-Weighted Least-Squares

3. All-Dirichlet, Inverse-Distance-Weighted Least Squares

4. Outflow on G=0, Dirichlet elsewhere, Green-Gauss

5. Slip on F=C, Dirichlet elsewhere, Green-Gauss

Euler equations for all these tests.

Note that the mesh is (non-orthogonal) structured and is derived 

from an analytic map to facilitate mesh refinement.



Computational Domain 2
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Tests Using Domain 2

6. Mixed subsonic and supersonic outflow on G=0, 

Dirichlet elsewhere, Green-Gauss

Euler equations solved.



Computational Domain 3
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Tests Using Domain 3

7. Dirichlet everywhere, Green-Gauss

8. No-slip with Adiabatic, Dirichlet elsewhere, 

Green-Gauss

9. No-slip with Isothermal, Dirichlet elsewhere, 

Green-Gauss

Navier-Stokes equations solved.



The Manufactured Solution

• The manufactured solution is defined in terms of 
p, u, v, w, T.

• These variables are defined primarily using 
products of sinusoidal functions for smoothness 
and differentiability.

• The manufactured solutions for these variables 
conform to the previously mentioned constraints 
for testing BC’s.

• See AIAA2005-0088 for the derivation, statement, 
and in-depth discussion of the manufactured 
solution. 



• Compressible subsonic through hypersonic

• Laminar through turbulent regimes

• Inviscid and viscous flows

• Steady state and transient

• Chemically reacting flow

• Multi-physics coupling

• Verified capabilities

• Arbitrary body motion

• Finite Volume, Unstructured Mesh

• Adaptivity

Premo
premo (Latin) – to squeeze (compress)

Develop simulation capabilities to perform compressible

flow calculations.



Test 1

Test Setup:

• Solving Euler Equations

• Dirichlet boundary conditions applied to all dependent variables

• Green-Gauss gradient reconstruction 

First-try Results: observed 2nd-order of accuracy in density, pressure, 
and velocity

Conclusions: 

• Because observed order matched expected order, there is strong 
evidence that the interior (Euler) equations are correctly solved.  

• Green-Gauss order was verified as well.

• MMS testing is facilitated by first testing the interior equations before 
applying complex boundary conditions.  

• Because the Dirichlet conditions, as implemented in Premo, are 
infinite order of accuracy, the interior equations are best tested using 
Dirichlet conditions.



Test 2

Test Setup:

• Solving Euler Equations

• Dirichlet boundary conditions applied to all dependent variables

• Equally-weighted Least-squares gradient reconstruction 

Results on First Try:  Observed order of accuracy was between 0.5 and 1.0 for 
all variables (see AIAA2004-2629).  

Explanation: 

• First tried to justify the observed order by citing papers in the literature which 
showed similar behavior, saying this must be the formal order.  

• Then, through an independent effort, discovered a coding mistake within an 
index swapping algorithm for the directional derivative in the gradient 
calculation.

Corrected the coding mistake and re-tested  (see next slide)



Equally-Weighted Least Squares

N

o
b
s
e
rv
e
d
o
rd
e
r
o
f
c
o
n
v
e
rg
e
n
c
e

20 40 60 80 100 120
0

0.5

1

1.5

2

DENSITY_Linf

PRESSURE_Linf

TEMPERATURE_Linf

U_VELOCITY_Linf

V_VELOCITY_Linf

W_VELOCITY_Linf

After fixing the coding mistake,

observed order-of-accuracy

appears to be between 1.5 

(U_velocity) and 2.0.   But
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Manufactured Solution Modified

Modifications made to attain asymptotic regime with 

previous meshes.

Approach:

• Decrease wave number parameters in sinusoidal 

functions used to define F and G.

• Decrease wave numbers and constants used to 

define the solution variables p, u, v, w, T.



Equally-weighted Least Squares
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Test 2 - Conclusions

Conclusions: 

• When formal order-of-accuracy is unknown, don’t be too quick to 
blame the numerical algorithm if observed order is lower than 
expected,

• MMS can indicate that a coding mistake probably exists, but will
not automatically find it for you,

• Even after a coding mistake has been found, results may still not 
match the expected order-of-accuracy because other problems 
remain,

• Attaining the asymptotic regime on practical mesh sizes 
depends heavily on one’s choice of parameters in the 
manufactured solution.  Need parameter values that result in a 
problem that is not too hard, but not too easy. Start with values 
which result in an easy problem because requires less computer 
time,

• MMS results provides strong evidence that equally-weighted 
gradient reconstruction option is now working correctly,



Test 3

Test Setup:

• Solving Euler Equations

• Dirichlet boundary conditions applied to all dependent variables

• Inverse-Distance Least-squares gradient reconstruction

Results: see next slide

Conclusions:

• Seems to be approaching second-order but not quite in 
asymptotic regime on U_velocity. 



Inverse-Distance-Weighted

Least Squares
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Test 4

Test Setup:

• Solving Euler Equations

• Supersonic Outflow Boundary condition on G=0

• Dirichlet boundary conditions applied to all dependent variables elsewhere

• Green-Gauss gradient reconstruction 

Results: observed 2nd-order of accuracy in density, pressure, and velocity

(see AIAA2004-2629)

Conclusions:

• Because observed order matched expected order, there is strong evidence 
that the Outflow boundary condition is correctly solved.  



Test 5

Test Setup:

• Solving Euler Equations, 

• Slip boundary condition on F=C, 

• Dirichlet conditions applied elsewhere, 

• Green-Gauss gradient reconstruction

Results on First Try:

• Negative order-of-accuracy observed in all variables!

Explanation:

• The slip surface data lived on multiple processors on a parallel machine.  The 
surface normals where the processor boundary intersected the slip surface 
were inconsistent between the processors because insufficient information 
provided across the processors. Code violated a known assumption of the 
parallelization algorithm.

Results on Second Try (after above problem corrected):  

• Negative order-of-accuracy observed in all variables! (see next slide)



Slip Condition
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Discussion of Slip Results

• Negative order-of-accuracy in MMS results indicates 

non-convergence to solution.

• To date, no coding mistakes have been identified as 

the cause.

• Other non-MMS tests do not indicate non-

convergence of measured quantities, although these 

tests are not as general as the MMS tests.

• Whether an unidentified coding mistake exists, or 

whether there is a problem with the MMS test itself is 

not known at this time.  More work needed.



Test 6

Test Setup:

• Solving Euler Equations,

• Mixed subsonic and supersonic outflow on G=0,

• Dirichlet elsewhere, 

• Green-Gauss gradient reconstruction

Results: observed 2nd-order of accuracy in density, pressure, and 
velocity (see AIAA2004-2629)

Conclusions: 

• The mixed subsonic & supersonic test of the outflow condition 
was observed to be second-order, extending the verification 
of the outflow condition to the full range of Mach numbers.

• Probably the first demonstration that MMS can be 
successfully applied to the testing of outflow boundary 
conditions on production CFD code.



Test 7

Test Setup:

• Solving Navier-Stokes,

• Dirichlet boundary conditions everywhere & on all variables,
• Green-Gauss gradient reconstruction

Results on First Try:

Observed zero-order accuracy on the coarsest meshes,



Test 7

Explanation of Zero-order behavior:

• It was observed that the error went to zero along edges which were 
aligned with one of the coordinate axes,

• Investigation revealed a coding mistake in the CHAD gradient 
correction, 

• Mistake went undetected in prior MMS verification work (Roy, 
AIAA2002-3110) because aligned Cartesian meshes were used to 
reduce computational cost

• As a bonus, another unrelated mistake in an unused code option was 
found while looking for the CHAD mistake!  (Incorrect calculation of 
thermal conductivity when viscous flux option selected).  This mistake 
may have been found by later MMS testing.

Runs were repeated after the mistake was fixed (see next slide).



Navier-Stokes Results

N

o
b
s
e
rv
e
d
o
rd
e
r
o
f
c
o
n
v
e
rg
e
n
c
e

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

DENSITY_Linf

PRESSURE_Linf

TEMPERATURE_Linf

U_VELOCITY_Linf

V_VELOCITY_Linf

W_VELOCITY_Linf

Test 7 results 

after the mistake in 

CHAD gradient 

fixed.

Observed order of 

pressure and density 

is about 1.5



Observed Order of Density
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Explanation of Navier-Stokes Results

Explanation of Test 7, Second Try Results:

• The observed 1.5 order in density & pressure  appears to be 

restricted to the F=0 boundary

• First Hypothesis: The slightly reduced order of convergence 

may be the result of using a compressible algorithm in the 

incompressible limit. Shot down by additional tests with higher 

Mach numbers 

• Current hypothesis: CHAD correction is a tradeoff between 

accuracy and robustness, i.e., to minimize grid decoupling in 

viscous term one has to sacrifice second-order accuracy.  This 

may explain the results on previous slide.



Test 7

Interim Conclusions:

• Important coding mistakes will go undetected with insufficiently

general tests. MMS provides a means of constructing these 

general tests.

• Ultimately, all coding mistakes are found by scrutinizing source

code.   The intensity of the scrutiny goes up dramatically when a 

coding mistake is suspected, and even more when the nature of 

the possible mistake is known. The bonus mistake was found 

because the particular routine was thought to contain the 

mistake when in fact it did not.



Test 8

Test Setup:

• Solving Navier-Stokes,

• No-slip, adiabatic,

• Dirichlet boundary conditions everywhere & on all variables,

• Green-Gauss gradient reconstruction

Results of First Try:

• Second order accuracy observed for temperature,

• First order accuracy observed for density and pressure, but only
on the boundary,

• See next two slides.



Adiabatic No-Slip Condition
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Adiabatic No-Slip Condition
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Boundary versus Interior Error

Explanation:

• For hyperbolic or parabolic equation sets, it is possible for 

error generated at a boundary to propagate out of the 

domain or remain on the boundary surface, rather than 

propagating into the interior.

• Whether this happens depends upon the variables in 

which the error is generated and the direction of 

characteristics at the surface.

• Because the boundary nodes compose a smaller fraction 

of the total as the mesh is refined, this situation results in 

order p convergence of the L2 and L1 norms, even when 

order p – 1 error is generated on the boundary.  



Test 8

Conclusions:

• For non-elliptic systems, order-of-accuracy using L2 error norm 

may overlook lower order error confined to an outflow boundary

• No further investigation of this case is planned because first 

order accuracy is expected and explained on the boundary.  



Test 9

Isothermal no-slip results in Test 9 look very similar 

to the adiabatic no slip results but still running on the 

129x129x129 grid.



Conclusions

• A coding mistake in the CHAD gradient correction (to 

remove odd/even decoupling) was identified and 

corrected.

• An unresolved issue exists with the slip condition 

test, so further investigation is warranted.

• Order 1.5 in density and pressure was observed in a 

region of the Navier-Stokes test:

– Latest hypothesis: order-of-accuracy of CHAD gradient 

correction is not always two

– A future run will be performed to test this hypothesis.



Conclusions (2)

• All boundary conditions except the slip condition have 

been verified to their expected orders of accuracy. 

• The coding mistake with the least squares gradient in 

prior work has been corrected and verified.

• Changes made to the manufactured solution have 

allowed better attainment of the asymptotic regime on 

the chosen sequence of meshes.

• Future work will focus on verifying the Reynolds-

Averaged Navier-Stokes equations as well as dealing 

with unresolved issues such as slip.

• Verification of non-steady flow using MMS remains.



Lessons Learned

• Exact solutions can be manufactured to test slip, no-slip, and 
outflow boundary conditions,

• Demonstrated (for the very first time!) the feasibility of verifying a 
mixed subsonic/supersonic outflow boundary condition via 
MMS,

• Testing on non-orthogonal meshes revealed hidden coding 
mistake not found with Cartesian meshes,

• Both coding and algorithmic mistakes were uncovered,

• MMS usually cannot be applied blindly but takes understanding 
of the code, it’s algorithms, and how to troubleshoot,

• Prior tests of Premo using MES did not test any boundary 
conditions.  Even had they done so, coverage would not be as 
complete because simplifications of the PDE’s would have been 
required.
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